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1. INTRODUCTION 
The DARPA Control of Agent-Based Systems (CoABS) Program has ushered in an era of fast-paced 

growth in the development of agent-based systems technologies. The functionalities, capabilities, and 
limitations of agents have evolved rapidly in recent years. Through our efforts in the CoABS program we 
have begun to understand what the capabilities of software agents can be, and we have a better 
understanding of how to make effective use of large numbers of agents in the accomplishment of specific, 
large scale tasks. Specifically, we have focused on strategies and mechanisms for making effective use of 
heterogeneous agents in tasks requiring some degree of inter-agent or human-agent coordination. It has 
been our belief throughout this program that software agents are best utilized as parts of carefully 
composed teams of software (and human) agents where humans act as the primary team leaders or 
managers, directing the team’s behavior and managing the team’s activities during execution, especially 
when problems occur.  

However, many of the distributed software components that are needed in real-world systems are not 
agents at all by most current definitions. Our approach has been that we must expect that a range of 
“agent” and “less than agent” software components will be involved, and we have developed mechanisms 
to characterize their functional capabilities, domain knowledge, information requirements, and decision 
authority, in order to properly task them. Furthermore, the ability to ‘agentize’ legacy systems in order to 
improve interoperability has been an important issue, and one in which we have developed techniques 
and experience.  

Generally, our approach has been to simultaneously develop mixed-initiative user support agents and 
tools and an environment in which we can experimentally explore approaches to user interaction with 
these team building and managing agents. We believe that effective techniques and tools for humans to 
use in managing and organizing agent teams must be derived experimentally. To this end, we developed a 
testbed using the OMAR (Operator Model Architecture) agent simulation environment (Deutsch, 1998; 
Deutsch & Adams, 1995): a sophisticated environment for discrete-event simulation modeling of goal-
directed agent behavior developed at BBN, for experiments in human-centered agent team design and 
management.  

This testbed consists of an agent simulation environment that enables us to explore techniques for 
tasking agents using domain objectives and terms. The testbed has also allowed users to organize teams 
and address coordination issues, such as the most effective use of mediators, and the selection of effective 
organizational control strategies for different classes of tasks. By using OMAR as a simulation tool 
supporting agents with explicit goal and process representations we have been able to model the wide 
variety of software agents that have been necessary to explore the issues addressed herein. 

In order to formally evaluate our findings, we participated in a series of three Technology Integration 
Experiments (TIEs). These TIEs have involved a series of demonstrations of mixed-initiative agent-based 
computing in the context of large military organizations. 

The NEO (Noncombatant Evacuation Operation) TIE illustrated the use of agent technology for 
cooperatively planning and executing a hypothetical evacuation of US civilians from a Middle Eastern 
city in response to an escalating terrorism crisis. The NEO TIE involved the coordination of a number of 
agent systems whose agents were used to evaluate a crisis situation, form an evacuation plan, follow an 
evolving context, monitor activity, and dynamically re-plan. The NEO TIE demonstrated the 
interoperability and use of multiple disparate agent systems for aiding humans in effectively monitoring 
the scenario, retrieving and fusing information for immediate use, and planning and re-planning an 
emergency evacuation. 

The MIATA (Mixed-Initiative Agent Team Administration) TIE involved a series of demonstrations 
of mixed-initiative agent-based computing as part of a disaster relief effort, modeled on the events 
surrounding Hurricane Mitch in 1998. The goal was to explore and validate the potential for the CoABS 
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Grid to support disparate agent-based systems functioning effectively in collaboration with humans in a 
dynamic, distributed organization. 

Most recently, the Coalition Agents Experiment (CoAX) TIE was created to provide a rich and 
militarily relevant setting for experimenting with agent-based systems for coalition operations. One of the 
critical concerns in any coalition operation (military or civilian) involves protection of sensitive or 
proprietary information. The CoAX TIE models the complexities and nuances of the relationships 
between different countries that make up the coalition peacekeeping force, including varying levels of 
trust, misinformation and deception, and the need for varying degrees of dynamic information sharing. 

2. OBJECTIVES 
It has been our contention that the planning of effective agent teams is no less complex than the 

planning for effective human teams. In different ways, it is more complex as the capabilities and 
limitations of software agents are more pronounced. Software agents will typically not possess human-
like intelligence and common sense. Most are more like “idiot-savants” in their dedication to a single 
purpose. As such, plans to coordinate their behavior need to be more precise. Issues of team member 
selection and coordination, and proper communications content in exchanges between agents need to be 
carefully planned. Team performance needs to be monitored for “disconnects” and failures anticipated or 
discovered as soon as possible during execution. Our claim is that effective support for human managers 
of agent teams is and will be of paramount concern for the foreseeable future, and that the agents must 
become more adaptive and reflective to enable humans, even assisted by planning agents, to manage them 
effectively.  

 This support for humans requires a number of areas be addressed.  We have focused our research on 
a number of areas critical to tasking and managing teams of humans and agents, including:  
1. Techniques for ‘agentizing’ existing systems to enable them to be more easily integrated into the 

functions of larger, human managed organizations. 
2. The development of an environment in which we can experimentally explore approaches to human 

and agent interactions. 
3. Human Computer Interaction techniques for interactively defining tasks and specifying roles and 

communications between agents. 
4. Mixed-initiative support agents to help users identify appropriate agents for tasks, and ascertain that 

agents can communicate compatibly, satisfy timing dependencies, and provide structural support for 
execution status monitoring. 

5. Mechanisms for interactively forming and controlling teams of agents in support of human needs and 
objectives. 

6. Support for the collection, summarization and visualization of agent task status, to convey to users the 
impact of problems on major team objectives. 

7. Support for dynamic retasking to surmount execution-time problems, changing conditions and 
objectives. 

8. A model for the establishment of cooperative information sharing among teams of agents. 
9.  Techniques for automatically translating information across differing ontologies thereby allowing 

agents to ‘speak the same language’. 
10. Exploring the use of DAML-S as a language to express the capabilities and services of agents. 
11. Techniques for monitoring and controlling agent communication based on the semantic content of the 

communication messages, which enable agents to communicate interoperability. 
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3. NONCOMBATANT EVACUATION OPERATION TECHNOLOGY INTEGRATION 
EXPERIMENT 

The NEO TIE was developed to illustrate agent technologies for collaboration, information retrieval 
and transformation across distributed data sources, and for agent supported scheduling and planning. This 
was done in the context of a hypothetical scenario in which US civilians must be evacuated from Kuwait 
City in response to a bomb explosion at the International Conference on Petroleum and the Environment. 
In the NEO TIE news and weather information were retrieved from a number of different sources and 
used as part of an initial planning phase. Primary and contingency flight plans were devised using both 
commercial and military airlifts. Evacuees were located using a number of different information sources, 
and evacuation routes planned. Evacuation missions were simulated and rehearsed, with various dynamic 
events, requiring active scene monitoring and dynamic replanning. The NEO TIE demonstrated the 
interoperability and use of multiple disparate agent systems for aiding humans to effectively monitor the 
scenario, retrieve and fuse information for immediate use, and to plan and re-plan an emergency 
evacuation. 

Our contribution to this TIE was an agent-wrapped version of the Camps Mission Planning System 
(MPS) that was under joint development by BBN and Kestrel Institute for the Air Mobility Command. As 
the main scheduling engine part of MPS was written in LISP, we developed a general-purpose agent 
wrapping mechanism to enable MPS to talk to other software agents that were using the Retsina 
implementation of the KQML agent intercommunications language. This tool, called the LISP-KQML 
Proxy, was subsequently used by several other research teams within the CoABS program, including the 
University of Michigan and CMU, and a revised version is now available for use with the CoABS GRID.  

3.1 AGENTIZING THE CONSOLIDATED AIR MOBILITY PLANNING SYSTEM 
(CAMPS) – MISSION PLANNER (MP)  

BBN developed the ‘agentized’ version of the CAMPS Mission Planner (MP) for experimental use in 
mixed-initiative multi-agent systems that included logistics elements. The CAMPS Mission Planner 
(Burstein & Emerson, 1999) is a scheduling system for cargo aircraft developed jointly by BBN and 
Kestrel Institute for the Air Force. CAMPS-MP takes as inputs a set of  ‘requirements’, each consisting of 
quantities of cargo and people to be moved from one airport to another during some time interval. It 
produces detailed schedules specifying the times at which an aircraft of some type will fly from where 
they are based to pick up cargo and carry it to its destination, and then return to home base. Requirement 
sets can be quite large, numbering hundreds or even thousands of elements, and hundreds of tons of 
cargo, from tens of locations. Numerous constraints must be satisfied simultaneously to produce valid 
schedules, which the scheduler can do in seconds or minutes. 

A simplistic view of the task faced by a user of the Mission Planner is, given a set of requirements, to 
specify a set of suitable aircraft resources, the ports to be made available for refueling (or locations for 
aerial refueling), should that be necessary, and to ensure that the schedule produced moves all of the 
requirements by their due dates. The scheduler will fail to schedule flights for all of the cargo 
requirements if there are constraint violations, or insufficient resources provided, in which case some 
cargo may be scheduled to arrive late or not at all. As originally developed, the CAMPS Mission Planner 
had a traditional graphical user interface for specifying input parameters, and a variety of views of the 
product schedules produced, including maps, tables and GANTT charts. All user interactions were by 
keyboard and mouse. 

For the NEO TIE, we implemented a fairly simple agent service message protocol for MPS using 
KQML, that allowed the scheduler to be called by another agent. Parameters of the scheduler could be set, 
and queries and updates to the internal data store of MPS (including scheduler results) could be responded 



 

 4

to. This simple API was subsequently extended greatly to support the TRIPS-CAMPS TIE, described 
below.  

4. MIXED-INITIATIVE AGENT TEAM ADMINISTRATION (MIATA) WORKING 
GROUP 

In January of 1999, Prof. Hendler, the incoming CoABS Program Manager asked Mark Burstein at 
BBN to lead the group of researchers interested in mixed-initiative agent systems within the CoABS 
program in a two year effort to demonstrate mixed-initiative agent systems dynamically interoperating 
with human users. This was entirely consistent with our initial vision for research on mixed-initiative 
agent teams. The working group adopted the name MIATA, for Mixed-Initiative Agent Team 
Administration. We began developing a plan for a simulation-based demonstration of large-scale mixed-
initiative agent coordination that spring. As a first step in that direction, BBN began a six-month effort 
collaborating with James Allen and George Ferguson at the University of Rochester, that combined their 
interactive, multi-modal multi-agent TRIPS planning system with the agentized version of MPS. Thus, 
the CAMPS-MP agent continued to be an integral element of our experimentation and demonstrations of 
agent functionality and utility in the next series of TIEs, the MIATA TIEs. 

 

4.1 THE ROCHESTER INTERACTIVE PLANNING SYSTEM - CAMPS 
We developed a prototype mixed-initiative planning tool for airlift scheduling by integrating elements 

of TRIPS, The Rochester Interactive Planning System, an agent-based, interactive, mixed-initiative 
planning system using spoken natural language dialogue (Ferguson and Allen, 1998), with the CAMPS 
Mission Planner, an interactive airlift scheduling tool developed for the Air Force (Emerson and Burstein, 
1999), together with some related resource management agents representing other parts of the airlift 
planning organization. See Burstein, Ferguson, and Allen (2000) for a detailed discussion of this work.  

In developing this demonstration system, our approach was to extend our inital KQML agent service 
model for MP agents to reflect the complexity required to manage such a complex service through an 
intelligent interface agent, rather than directly through the systems native GUI. The GUI remained 
accessible to the user, but events happening throught the GUI now had to be monitored by the multi-
model agent, and that agent (TRIPS) could invoke large portions of the functionality provided by the 
interface. As we did this, we collected and cataloged the reasoning and information interchange issues of 
the various agents forming the complete combined system. This included problems arising in 
interpretation and reformulation of user intent, and the planning of requests to the various back-end, 
airlift-domain-specific agents. 

Overall, this TIE effort had a number of goals. First, we wished to demonstrate the relative ease with 
which the TRIPS agent architecture could be adapted to a new planning domain, and to interact with a 
new back-end planner. Second, we sought to understand what would be required for an effective agent 
ACL (Agent Communication Language) interface to a scheduling or planning tool that had its own GUI 
and was not developed for multi-modal mixed-initiative interaction. Third, we wished to develop a model 
for the problem-solving agent that could mediate between the user and a set of “back room” planning 
agents. 

Our work involved the integration of three existing systems, TRIPS, MPS and an aircraft resource 
allocation system called the Barrel Allocator. TRIPS, The Rochester Interactive Planner System 
(Ferguson and Allen, 1998) is a multi-agent system that includes agents for speech recognition, natural 
language understanding, reference resolution, discourse management agents, speech generation, planning 
and plan recognition, among others. The TRIPS agents collectively provide a multi-modal interface by 
which users can discuss and develop plans through mixed-initiative interactions with what appears to 
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them to be a single ‘intelligent’ agent. The agents interact to produce this behavior by exchanging 
messages using the KQML (Finin, Labrou & Mayfield, 1993) agent communication language, operating 
in a hub-based architecture provided by the TRIPS Input Manager (TIM). Figure 1 shows the logical 
connections between the agents involved in the integrated TRIPS/CAMPS system. 
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CAMPS
MP Agent
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Problem-Solving
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Figure 1: TRIPS/CAMPS agents 

TRIPS-CAMPS supports a wide range of speech acts, ranging from direct requests (e.g., “show me 
the map”), questions (“Where are the transports?”), suggestions (“Let’s use a helicopter instead.”), 
acceptances, rejections, and a range of social acts.  

The specialized back-end agents in TRIPS and earlier incarnations included an incremental (repair-
oriented) temporal planner, a route finder, a scheduler, a simulator that represented the changing world 
state, and a temporal knowledge base agent. These various agents were invoked by the problem solving 
manager in response to user inputs. A typical interaction with TRIPS when working with the CAMPS-
MPS system went as shown in Table 1. System responses are in bold face.  All of the dialogue was 
verbal, and the TRIPS agents managed the conversation. 
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U: Show me the active plans. 
T: Ok. [Displays CAMPS list of plans] 
U: Let's work on the Georges plan. 
T: Ok. [Displays Georges plan  on MPS GUI] 
U: Estimate resource needs. 
T: 4 C141s and 1 C5 will be needed. 
U: Where can we get them?  
T: There are 1 C5 from Travis, 2 C141's from Charleston and 3 C141's from Mcguire. 
U: Let's use two 141s from McGuire. 
T: Ok. You still need 1 C5 and 2 C141's before we can schedule. 
U: Use the C5 from Travis also. 
T: Ok. You still need two C141's before we can schedule. 
U: And use the 141s from Charleston. 
T: 12 requirements could not be scheduled. 
U: Show them to me. 
T: Ok. [Puts up list of failed requirements] 
U: Explain PWNC 1. 
T: C5's can't land at Washington. 
U: Lets use a C17 instead. 
T: One requirement is still unscheduled. 
U: Explain it. 
T: C17's, C5's, and C141's cannot fly non-stop from Elmendorf to Roosevelt Roads. 
U: Show me on the map. 
T: Ok. [Shows map] 
U: Use Charleston as an enroute stop. 
T: All requirements are scheduled. 

Table 1: Trip-Camps Dialog (U is User) 

Figure 2 shows some of the graphical views as seen from a user’s perspective. The MP agent, using 
pre-existing views, with one exception, generated the graphic displays. While a user could have 
accomplished much the same result by interaction with the CAMPS-MP GUIs, many steps would have 
required tedious entry of information through dialog windows. Furthermore, we were forced to extend the 
MPS’ ability to explain scheduling failures in order to make the dialog more effective. These capabilities 
(without the speech) are part of MPS today, and are a key capability not found with many schedulers. 
That this kind of explanation was seen as critical first in conjunction with the TRIPS dialog system 
highlights how much the interaction modality effects system design.  
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Figure 2: User views for TRIPS/CAMPS 

This first-cut integration of TRIPS and CAMPS agents was developed in a relatively short period of 
time (approximately three months) in part because of the modular, agent-oriented construction of TRIPS 
itself. Aside from small efforts for extending the vocabulary and language understanding modules, the 
main effort was in ‘agent-ifying’ the airlift domain agents, CAMPS-MP and BARREL, and in developing 
a specialized problem-solver manager agent that could do the required interpretation and translation of 
user actions and airlift agent responses, in the context of the airlift mission planner’s task. 

We developed a KQML API that provided essentially a programmatic means of invoking the 
behaviors available through the scheduler’s graphical user interface. This was done without explicit 
reference to the internal representations manipulated by and shared among the TRIPS agents. Table 2 
shows a summary of the message signatures handled by the CAMPS-MP agent. It includes a set of 
commands for manipulating the various views provided by the CAMPS-MP interface, a set of commands 
for describing new problems and revising old problems to be posed to the scheduler, a request for 
invoking the scheduler, and queries for analyses of scheduler results and explanations of problems found 
in those results. 

The main information passing messages that would be used also when another planning agent 
invoked MPS, instead of the user (NEW-PLANSET, REVISE-PLANSET, and AUGMENT-PLANSET) 
all take as keyword arguments the different kinds of data elements that define problems for the Mission 
Planner to solve. NEW-PLANSET is used to create a new problem from scratch, while AUGMENT-
PLANSET is used to add ports, resources or requirements to an existing problem. REVISE-PLANSET is 
used to replace one of the previously specified sets of values. 

We believe that this interface is representative of the kind of interface that one will get in practice 
when ‘wrapping’ a legacy system. As such we saw it as a reasonable target for the problem solver 
manager that it was to interact with. More interesting here was the need to not just wrap MPS but extend 



 

 8

its capability to produce explanations of why things went wrong, something that users of scheduling 
systems also require, but usually have to work hard to discover on their own.  

 
KQML 
Performative 

CONTENT FORM 

REQUEST (OPEN-VIEWER :VIEWER <VIEWER>) 
REQUEST (FOCUS-VIEWER :VIEWER <VIEWER> ...) 
REQUEST (CLOSE-VIEWER :VIEWER <VIEWER>) 
REQUEST (DISPLAY-TABLE :TITLE <STRING> :QUERY <SQL>) 
REQUEST (MAP-FOCUS :LATITUDE <LAT> :LONGITUDE <LON>  

:ZOOM <FLOAT> :PLAN-ID <ID>) 
INFORM (NEW-PLANSET :PLAN-ID <ID>  

         :START-DATE <DATE> :END-DATE <DATE> 
         :PRIORITY <PRI> 
         :REQUIREMENTS (<REQUIREMENT>*)  
         :AVAILABLE-ASSETS 
                ((<ACTYPE><QTY><UNITID><START><END>)*) 
     :AVAILABLE-PORTS       
                ((<LOCID><NAME><ENROUTE?>...)*) 
     ...) 

INFORM (REVISE-PLANSET ….keywords same as NEW-PLANSET….) 
INFORM (AUGMENT-PLANSET ….keywords same as NEW-PLANSET….) 
ASK-ONE (FLIGHT-PLAN :PLAN-ID <ID>) 
ASK-ALL (LIST-PLANSETS :FIELDS…) 
REQUEST (SHOW-PLANSETS :PLAN-TYPE <str>  

              :NEW-SINCE <time> :CHANGED-SINCE <time>...) 
REQUEST (ANALYZE-PLAN :PLAN-ID <ID>) 
REQUEST (SHOW-UNSATISFIED-REQUIREMENTS :PLAN-ID <ID>) 
REQUEST (SCHEDULE-AIRLIFT :PLAN-ID <ID>) 
REQUEST (ESTIMATE-RESOURCES :PLAN-ID <ID>) 
REQUEST (EXPLAIN :OBJECT (UNSATISFIED :REQ-ID <ID>)) 
 

Table 2: Summary of KQML interface to CAMPS-MP 

In integrating MPS with a framework for multi-modal mixed-initiative interaction, we have 
uncovered, or, in some cases, rediscovered, requirements for both the problem solver mediating between 
the user and these domain agents, and for the capabilities of the domain agents that will be suitable for 
participating in such systems.  

In particular, we discussed in Burstein, Ferguson, and Allen (2000) the importance of information 
sharing between agents that reason and need to present information to the user, and the agents responsible 
for dialogue. We also provide an extended discussion of the important role that a capability to generate 
explanations can play in furthering the cooperative problem solving of the user+agents team. Section, 7: 
Cooperative Information Sharing details our subsequent research on ways to improve the information 
sharing amongst agents and their users and solutions for cooperative information sharing within 
organizations.  

5. MIATA DEMONSTRATIONS 
For two years (January, 1999 – January, 2001), BBN led the MIATA working group of researchers1 

                                                                 
1 The MIATA working group consisted of Mark Burstein, David Diller, Alice Mulvehill, Brett Benyo and Ed Pattison-Gordon 

(BBN Technologies), Karen Myers and David Moreley (SRI), George Ferguson and James Allen (University of Rochester), 
Sebastian Thrun and Jaime Schulte (CMU), Brian Drabble and Najam-ul Haq (CIRL, University of Oregon), Drew McDermott 
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within the CoABS Program. The main focus of the group was on the development of a series of 
simulation-based demonstrations of mixed-initiative human-agent computing in the context of a large 
organization. The goal was to explore and validate the potential for heterogeneous agent systems to 
support and function effectively within dynamic, distributed human organizations. We are convinced that 
it is only because we developed a large organizational simulation model operating in a realistic scenario 
that we were able to understand and address the issues discussed here and in Burstein and Diller (2003, 
in-press) and Burstein, McDermott, Smith and Westfold (2000a, 2000b).  

We were driven by a scenario where users and software agents were teamed in a number of different 
offices representing the Joint Task Force (JTF) that coordinated the US Military’s response to the 
Hurricane Mitch disaster. We built this scenario based directly on the historical record of the events from 
a number of sources, and information we were able to obtain from the government about the plans that 
were made by the US to airlift supplies to the region. Hurricane Mitch struck Central America from 

October 26 to November 4 1998, the second most devastating hurricane 
ever recorded in the Western Hemisphere. 200 mph winds and 75 inches 
of rain left a death toll of over 11,000, with thousands more missing, and 
more than three million people were left homeless or otherwise seriously 
affected. Mitch caused over $5 Billion in damages. Honduras was affected 
most severely, with widespread flooding and devastation of its 
transportation infrastructure and villages. At least 70% of Honduras' crops 
were destroyed. 

The MIATA demonstration had six human users directing and interacting with over one hundred 
software agents to: 
♦ Form teams and assign tasks, 
♦ Gather intelligence about damage on the ground by interacting with a simulation, (MapleSim) of the 

region during and after the hurricane passed through,  
♦ Plan for the deployment of relief supplies and the repair of roads and bridges, 
♦ Manage logistical resources and the distribution of supplies, 
♦ Report and respond to problems ‘in the field’.  

 
The software agents used were a mix of ‘agent-wrapped’ versions of pre-existing software tools and 

agents developed specifically for the demonstration. The ‘wrapped’ agents were logistics planning and 
scheduling systems2 of various kinds with graphical user interfaces developed to address the needs of 
users with military logistic planning tasks. The other agents in the model were developed in OMAR 
(Deutsch, 1998) and PRS (Myers, 1993), two very similar reactive procedural execution systems. They 
were mostly representing field agents (trucks, helicopters, aircraft) and their local commanders (truck, 
helicopter, and airlift wing company commanders, other staff agents on teams). Agents communicate with 
users and other agents within the military organization, as well as agents representing other non-
governmental organizations like the Red Cross. We used several different agent communications 

                                                                                                                                                                                                               
(Yale University), Doug Smith and Stephen Westfold (Kestrel Institute), and Steve Ford (OBJS, Inc.). We are indebted to 
everyone for their hard work on this project. 

2 The CAMPS Mission Planner (Burstein & Emerson, 1999) is a scheduling system for cargo aircraft being developed by BBN 
and Kestrel Institute for the Air Force. The JADE logistics planner (Mulvehill & Caroli, 1999), developed at MITRE and BBN, 
is a prototype interactive case-based reasoning tool for composing deployment plans consisting of lists of cargo to be picked up 
from depots and delivered to the theater. Both were initially stand-alone systems with graphical user interfaces that were 
adapted for this work. CIRL’s DEO scheduler was wrapped as an agent without a user interface to provide the functionality 
required to schedule the deliveries and other activities of trucks and helicopters. 
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mechanisms for different clusters of agents, which were made to interoperate via the CoABS GRID3, an 
agent interoperation framework defined on top of Jini (Arnold, et al., 1999). 

5.1 MIXED-INITIATIVE MANAGEMENT OF A JOINT TASK FORCE 
Our simulation of the US Military’s disaster relief effort in response to Hurricane Mitch consisted of 

a hierarchical set of teams with humans (with agent assistants) leading the highest level teams. Figure 3 
illustrates the organization structure of the various organizational entities that were involved in the real 
events. In addition to using agents to represent different groups within the military organization, we also 
modeled interactions with other governmental organizations such as the Honduran government, as well as 
non-governmental organizations like the Red Cross, which was also providing medical relief. At the base 
of the simulation, we have the ‘mobile’ field agents that act through messages sent to the MapleSim 
simulation of the ground state in Honduras. MapleSim, developed at CMU modeled the hurricane passing 
through the country, and probabilistically created the damage to be repaired. It also supports messages 
sent to towns to collect state information, limited by communications damage, or visibility distance (for 
trucks and helicopters). 
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Figure 3: MIATA Organizational Model 

Figures 4 and 5 show a pictorial and timeline representation, respectively, of the users, agents and the 
communication flow between them in our demonstration framework. The main body of the team is a Joint 
Task Force (JTF), a dynamically formed organization structured by doctrine with a set of roles for 
different sub organizations. The main teams reporting to the commander are an intelligence collection 
group (JTF-J2), an operations group (JTF-J3) and a logistics group (JTF-J4). The task force 
communicates with other elements of the larger US Military organization. The JTF Commander reports to 
a US Joint Commander (not shown), whose role in the simulation is to give the initial guidance to form 

                                                                 
3 GITI/ISX Grid Vision Team, “The CoABS Grid:  Technical Vision,” http://coabs.gobalinfotek.com, 2000. 
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the team, and to receive progress reports. The JTF logistics team works with the logistics arm of the Joint 
command and, indirectly, with the US Transportation Command, which creates schedules for the airlift of 
supplies that are executed by the wing teams. 
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Figure 4: Users and Agents in MIATA Simulation 
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Collectively, the Joint Task Force team of humans and agents formed a hierarchical organization that 
interacts with the simulation to perform a variety of basic relief tasks such as the distribution of food, 
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water and shelter, providing medical relief, and repairing infrastructure such as roads and bridges. As part 
of the demonstration, we developed a number of classes of agents, each defined generically by its 
functional role in the organization. At the lowest level, the simulation includes a large number of field 
agents, such as trucks and helicopters, engineers, and medical relief teams. These agents act like ‘drivers’ 
of vehicles in that they interact with the MapleSim simulator (See Figure 6) to move simulated vehicles 
about, gather information (by messages received back from MapleSim), and can then generate field 
reports to their team leaders, and change the state of the simulation world. 

A second class of agents, Task Management Agents (TMA), schedule, task, and monitor other agents. 
They are the leaders of the field agent teams. Often these agents are also used as ‘information collectors’; 
agents that collect and disseminate (on request or periodically) information about field conditions for 
other agents on their teams. Typically, TMAs manage field agents, such as the helicopter and truck 
company commander agents that act as dispatchers for their vehicle agents, the wing commander agents 
that manage groups of cargo aircraft. 

Finally, a third class of agents, Personal Assistant Agents (PAA), supports mixed-initiative 
interactions between agents and humans. Work to date has focused primarily on three Personal Assistant 
Agent clusters: A cluster supporting the Joint Task Force (JTF) Commander, one supporting the JTF 
Intelligence (J-2) staff and one supporting the Operations (J-3) staff. 

 
Figure 6: MapleSim with hurricane crossing 

5.1.1 TASKABLE AGENT INTERFACE FOR COMPUTER HUMAN INTERACTION 

In a complex system involving multiple semi-autonomous agents, it is critical for human commanders 
to be able to easily monitor and control the agents under his or her command. A commander must be able 
to respond to unexpected events that the agents are unable to handle, or to retask the agents due to a 
change in mission goals or newly received information. In order to control a semi-autonomous agent, a 
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commander needs to be able to monitor the agent’s progress and observations, so that the agent’s current 
operating environment is understood. In addition the commander needs to be able to redirect the agent by 
modifying its goals.  

We created a multi-modal commander’s agent interface called TAICHI (Taskable Agent Interface for 
Computer Human Interaction) that gives a commander this sort of control over a multi-agent system. 

5.1.2 AGENT MONITORING 

In order for TAICHI to provide the commander with a detailed picture of what an agent is doing, it 
needs access to status information from that agent. This information is provided through status event 
generation goals incorporated into our agent framework. Any time an agent starts, succeeds, fails, 
suspends, or resumes a task, a status event is generated and sent as an agent message to TAICHI. The 
event generation code built into our agent model by use of aspect-oriented programming (Kiczales, 1996) 
via AspectJ4 for Java agents or around methods for Lisp agents. TAICHI, implemented as an agent itself, 
receives these status events through the agent communication mechanism in use, such as the CoABS 
Grid, and displays the events graphically in its task monitoring display. If an anomalous event occurs, the 
system may alert the user verbally to the issue indicated on the display. In the top left panel of Figure 7, 
for example, TAICHI is displaying the status of DOD-COMMANDER-1, an agent that has five assigned 
tasks. Four tasks, the three establish-team-members, and the launch-team, have been marked with a black 
dot to show that they have completed successfully. The fifth task, perform-assessment, is ongoing, and 
has been delegated to the agent, INTEL-AGENT-1.  

In addition to task status information, TAICHI can display location information on an OpenMap5 
map display. This can give the commander a visual representation of the location of an agent with a 
physical manifestation, and can be used to display domain specific data. The map display in Figure 7 
shows cities, bridges, and the road network essential for relief operations in Honduras in the MIATA 
scenario. 

                                                                 
4 http://aspectj.org 
5 http://openmap.bbn.com/ 
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5.1.3  AGENT TASKING 

 
Figure 7: TAICHI display for the MIATA scenario 

Once the commander has a full picture of the tasks the agents are executing and their status, the 
commander may wish to assign new tasks, or to stop execution of existing ones. TAICHI is a multi-modal 
interface, giving the commander a number of different ways to provide input. The bottom panel of Figure 
7 shows text and speech input. TAICHI uses the TRIPS or the BBN HARK Recognizer6 to understand a 
set of domain specific sentences. The commander can type the sentences in as text, or speak them into a 
microphone. In Figure 7, the commander first asked what towns haven’t been visited yet. TAICHI parsed 
this sentence, recognized it as an information query, and sent the query to the intelligence-gathering 
agent, INTEL-AGENT-1, that was assigned to the commander’s agent team. In this case, the intelligence 
agent responded with a list of 21 towns, which were highlighted on the map. The query result was also 
printed out to the dialog window(bottom), and spoken out loud. 

Another method for the commander to provide input is to use the map drawing tools to select map 
objects or draw regions. In figure 7, the commander has drawn a polygon on the map, encompassing the 
21 towns, returned in the previous query, that have not been visited yet. The commander then tasked the 
intelligence-gathering agent to gather data about the status of the towns inside the drawn region by saying 
“lets collect intel in this area first” into the speech interface. This illustrates our simultaneous use of 
speech and gesture to convey information to the system. 

                                                                 
6 http://www.bbn.com/speech/bbnhark.html 
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5.1.4 TEAM TASKING AND FORMATION 

In order to develop mixed human and agent organizations that are both flexible and robust, we have 
developed agents with explicit models of the team organization, including agent capabilities, roles, and 
lines of authority between agents based on their agreed-upon roles (Burstein and Diller, 2001, 
Forthcoming; Burstein, Mulvehill, and Deutsch, 1999a, 1999b). Similar model-based approaches have 
been explored by a number of other researchers (e.g., Cohen, Levesque, and Smith 1997; Rich and Sidner 
1997; Tambe and Zhang 2000). In order to enable mixed-initiative team formation, this information must 
be useful to agents interacting with humans. To aid in this, we have developed, in conjunction with the 
University of Rochester (Ferguson and Allen 1998), a multi-model interface designed to facilitate human 
interaction with Personal Assistant Agents (PAAs).  

As part of our disaster relief scenario, the JTF Commander forms the supporting JTF staff of humans 
and agents through a spoken dialog with his PAA in order to determine what other humans and their 
supporting PAAs are available to perform a number of critical roles such as Intelligence (J-2), Operations 
(J-3), and Logistics (J-4) as part the JTF team. A simple example of the interaction between the JTF 
Commander and his supporting PAA is as follows: 
 

Human: Establish a Joint Task Force at Soto Cano. 
Agent: Alright 
Human: Show me the officers there. 
Agent: <Displays a table of officers and their areas of expertise. > 
Human: Assign Captain Smith to be the J2.  
Agent: Ok. 
… 
Human: Show me the team objectives.  
Agent: <Shows objectives relevant to this task force.> 
Human: <Selects objectives> Inform the team. 
… 

 
Agents asked to perform a particular role within a team have the opportunity to either accept or reject 

the role, dependent upon the agent’s ability to perform the role, as a function of their existing capabilities, 
any pre-existing roles that may conflict with proposed role or team, or the overriding authority of a 
human controller. Furthermore, agents should be able to accept a role ‘with qualifications’; choosing only 
to perform a subset of its capabilities as a member of that team. Upon formation of the team, all team 
members are informed of all other team members, their roles, and any capabilities or command and 
control deviations from the default model. 

 Teams formation can occur either through a mixed-initiative operation between human and PAA 
or an autonomous operation by a PAA or Task Management Agent. In our disaster relief scenario, while 
the upper echelon of the JTF was formed with interaction from the human JTF commander, supporting 
subteams, including intelligence and operations teams, were formed autonomously by each team’s lead 
agent. These supporting subteams were formed by agents as required to support the tasks accepted by the 
JTF team leader. 

The interaction between agents or humans and agents regarding the tasking of subordinate agents 
requires a sequence of messages or communications policy (e.g., Bradshaw, et al. 1997), starting first 
with a request to perform a task. The agent’s decision to accept or reject a task is a function of a number 
of factors, including the capabilities of the agent, the tasking agent’s authority over the tasked agent, the 
existing goals of the agent, and other preexisting tasks. Acceptance or rejection of the task is reported, 
and the task is queued for execution, upon receiving an execution message from the tasking agent (See 
Figure 8). Upon confirmation of task execution, the agent determines any necessary conditions for 
completing the tasking, including the formation of subteams and delegation of subtasks. By default, task 
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failures or completions are reported to the tasking agent. However, the tasking agent may override the 
default reporting actions, specifying the results be reported to another agent. For example, the JTF 
Commander may request the J-2 perform a survey of the central region of Honduras and to report the 
results to the J-3. Advice (Myers 1996) can be used to say when a situation should be reported 
immediately versus periodically, and in a detailed or summarized form. 
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Figure 8: Message Processing 

6. TRANSLATION 
Agents that were not designed to work together may not use the same representations. Thus, getting 

agents to communicate often requires translating the data structures of the sender (the source 
representation) to the format required by the receiver (the target representation). Assuming that there is a 
formal theory of the semantics of the two formats, which explains both their meanings in terms of a 
neutral topic domain, we can cast the translation problem as solving higher-order functional equations. 
Some simple rules and strategies apparently suffice to solve these equations automatically. The strategies 
may be summarized as: decompose complex expressions, replacing topic-domain expressions with 
source-domain expressions when necessary. A crucial issue is getting the required formal theories of the 
source and target domains. We believe it is sufficient to find partial formalizations that grow as necessary. 

BBN collaborated with their subcontractor Yale University and Kestrel Institute on research aimed at 
getting agents to communicate with each other when their internal ontologies were different. By ‘agent’ 
we mean programs that operate at a high enough semantic level that they can form new connections to 
other programs in order to get a job done. To make such a connection, an agent must find other agents 
that might carry out a task on its behalf, and then establish a dialogue with them. Several researchers have 
examined facets of this interchange, including how agents might search for each other (Sycara et al., 
1999), how they might communicate once they have linked (Martin, Cheyer, & Moran, 1999), and what 
‘speech acts’ they might employ (Finin, Labrou, & Mayfield, 1997). However, the most pressing problem 
is getting them to speak the same language. This is our focus here. 

Suppose one agent, A, needs a certain fact, and agent B can supply it. Assuming that some previous 
‘brokering’ or ‘advertising’ phase has brought the two agents together, there remains the problem that the 
way A represents facts and the way B represents them are probably not compatible. It is necessary to 
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interpose a translation program between the two. We call this glue code. The problem is to generate glue 
code automatically.  

For example, suppose we are given a scheduling agent MP that produces an airlift schedule. For each 
aircraft, the schedule gives the sequence of flights that it is scheduled to make. In another agent (the 
Barrel Allocator), we also have an alternative representation of aircraft schedules that show when they are 
“committed” to a mission.  This model requires a table that specifies, for each time slot, the number of 
each type of aircraft that are committed (i.e. not free for allocation) in that time slot. We were able to use 
models of the data or knowledge used by these two agents to automatically derive a translator function f 
from schedules to numbers of committed aircraft. The approach is quite general to structured knowledge 
representation formalism. It is based on combining some very general purpose rules of translation 
expressed in a higher order logic with ontologies for the source and target domains and knowledge of 
shared abstractions of the concepts represented in those domains.  

Details of our approach for automatically deriving the “glue code” programs for translating the output 
of a source agent to the input representation of a target agent can be found in Burstein and McDermott, 
1996; Burstein, et al, 2000a, 2000b; and McDermott, Burstein and Smith, 2001. This work has continued 
under the DARPA DAML Program. 

7. COOPERATIVE INFORMATION SHARING 
As part of our interest in models of and support for mixed-initiative human control of software agent 

teams, especially in the larger context of dynamic, real world organizations, we have developed a model 
for the establishment of cooperative information sharing among agents on teams formed dynamically for 
particular purposes within such organizations (Burstein & Diller, 2003, Forthcoming). We argue that 
effective information sharing in the presence of such teams requires the active dissemination of 
descriptions of current and future information needs to both local teammates and to the larger 
organization. Only by this mechanism can one avoid having to make explicit at design time who will 
provide each bit of the information. We consider how information sharing within the organization can be 
promoted not only for the immediate goals shared by a tightly coordinated team, but some of the likely 
information needs of the larger organization going forward. We illustrated the model in the context of the 
MIATA TIE. 

The model proposed is based on representing and disseminating knowledge about information needs 
and information provision capabilities of agents. These agents are assumed to exist as part of a dynamic 
organization composed of interrelated heterogeneous agents teams and humans supported by agents. 
Using this model, agents, when given specific tasks, can determine whom to tell about their status, 
failures, and information that they discover that is potentially needed by others on their team or in the 
larger organization. An important goal of the model is that it be flexible enough so that users directing 
teams can initially make assumptions about agents’ policies for information sharing, but change the 
information flow behavior dynamically.  

A key element of the approach is the announcement by each agent of information requirements and 
anticipated future capabilities to do information provision, that is, the kinds of information the agent may 
come to have as a result of its intentions. These announcements to teammates establish the conditions for 
cooperative information sharing. Furthermore, by associating information policies with default intentions 
of team roles and also the capabilities associated with roles that may be activated by team plans, agents 
can quite easily initiate dialogs to coordinate information sharing when accepting roles or initiating new 
tasks.  

A key issue for human and mixed human/agent organizations are the policies for information flow to 
support the varied tasks of individual agents and groups within those organizations. When considering 
how agent teams might support such policies from the perspective of shared intentions or shared plan 
theories, there are several difficulties. First, while these models provide some of the theoretical basis for 
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motivating information flow, in terms of cooperation rules or policies to support the objectives of 
teammates, it may be difficult or impossible to implement these abstract policies directly in software 
agents with limited inferential capabilities, as is frequently the case in heterogeneous agent systems. 
Second, the informational needs of agents can be arbitrarily context specific, which means that all team 
agents must know more about each other’s detailed plans and their knowledge state than even a Full 
Shared Plans model (Grosz & Kraus, 1996, 1999) would require.  

We argue that the determination of what information a teammate agent will need to achieve its 
announced intentions should, wherever possible, be done by either or a combination of the following: 
♦ making a characterization of that information need explicit in the shared model of that agent’s 

capability (to intend that result), when it is announced at team formation,  
♦ having the agent announce a specific information need when it commits to achieve that objective.  
 

The key observation here is that information needs should be made explicit, rather than left to shared 
knowledge of planning operators. It is frequently assumed that a capabilities description for an agent, 
much like APIs in more traditional distributed object systems, are composed primarily of the set of 
message patterns that an agent will respond to, and perhaps a characterization of the response. Yet stating 
that an agent can respond to a query containing a variablized well formed formula provides almost no 
information about what tasks or queries it can respond to. 

To address this problem, we identify two kinds of communication about information to be advertised 
by all agents in an organization. These advertisements are associated with either the basic intentions 
associated with acceptance of a role or with specific intentions adopted by an agent in support of 
individual or teams goals: 

Information Provision (IP) advertisements declare that the agent sending the message has an intention 
to achieve some purpose or execute some plan that results in it having information of the specified type. 
This signals an intention that it will answer queries with the identified classes of content, or provide such 
information on receipt of a subscription request. Information may be requested either on a periodic or ‘as 
learned’ basis. Information Provision advertisements are not retracted unless the original intention is 
aborted. IP advertisements are denoted as either Active (IPA) or Passive (IPP), depending upon whether 
the agent is actively pursuing the acquisition the information, or merely serving as a passive, but 
opportunistic gatherer and provider of that information.  

Information Requirements (IR) advertisements declare that the agent sending the message has an 
intention to achieve some objective requiring the information. The requirement may be either for the 
purpose of planning how to achieve the intent, execute a conditional plan, or for use during execution 
(i.e., processing the information). 

Simultaneously advertising an IR and IP over the same class of content suggests the agent’s role as a 
‘knowledge source’ for that information in the future. The agent will both collect the information from 
anyone who provides it and provide the information when needed to others. Furthermore, some 
‘knowledge sources’, like the J2 in MIATA, are active sources, in the sense that they will perform actions 
to acquire the information (or direct teams that do so). Such agents issue IPA  advertisements, which 
further indicate that they may adapt existing plans acquire content they do not have at the time queried in 
order to acquire the information sooner.  

IP and IR advertisements associated with an operation are immediately announced to team members 
upon the agent’s intention to perform that operation. An agent, upon learning of an IP advertisement that 
matches the class of content it requires, may initiate a subscription protocol with the agent advertising the 
IP, enabling it to automatically receive the desired information upon its availability, or with a specified 
delivery schedule. The subscription request details the specific information desired, the rate at which the 
information should be delivered (e.g., on-occurrence, on-completion, or periodic with a given period, 
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such as every once a day), and the level of detail to be provided (e.g., full vs. a specified summary level). 
Subscriptions may be removed after an information requirement ceases to exist. 

In order to support information sharing through IP and IR advertisements, an information sharing 
protocol has been established to facilitate the dispersal of advertisements within and among teams. In 
MIATA, these teams are organized hierarchically, though that is not critical to our model. What is 
important is that agents are often members of more than one team. For example, the Operations (J3) agent 
is a member of the JTF staff, but also is leader of the subordinate Operations team. These multi-team 
agents enable the sharing of information across teams. A Liaison agent may be used, often in conjunction 
with a Translation agent, to facilitate communication and information sharing between organizations with 
no common members. In MIATA, the Red Cross and the JTF teams communicate via such an agent. We 
have developed a number of rules that govern dissemination of information advertisements between team 
members, and their forwarding to adjacent teams. A subset of these is shown in Figure 9. 

 
Rule 1. An agent (x), after accepting a role (R) on a team, tells all teams, of which it is a member, the information it 
can provide (IPs) as a function of its default intensions (I). 

∀x [∀k ∋ x∈Tk [∀y≠x∈Tk ⊃ tell(x, y, IPI)]] 

Rule 2. An agent (x), after accepting a role (R) on a team, tells all teams, of which it is a member, of any 
information requirements (IR) associated with its default intentions (I). 

∀x [∀k ∋ x∈Tk [∀y≠x∈Tk ⊃ tell(x, y, IIR )]] 

Rule 3. After an agent (x) completes an intention (I), it retracts all IRs associated with that intention from all team 
members. 

∀x [∀k ∋ x∈Tk [∀y≠x∈Tk ⊃ tell(x, y,¬ IIR )]] 

Rule 4. Upon generating an intention for a capability (C) an agent (x) tells all team members of any IRs associated 
with that capability. 

∀x [∀k ∋ x∈Tk [∀y≠x∈Tk ⊃ tell(x, y, CIR )]] 

Rule 5. After an agent (x) completes an intention formed for a capability (C), it retracts all IRs associated with that 
capability from all team members. 

∀x [∀k ∋ x∈Tk [∀y≠x∈Tk ⊃ tell(x, y, CIR¬ )]] 

Rule 6. An agent (y) shares all IRs it is told about with all teams it is a member of, except the teams from which the 
originating agent (x) is a member. 

∀y[tell(x, y, IR) ⊃ ∀k ∋ y∈Tk ∧x∉Tk [∀z≠y∈Tk [tell(y, z, IR(x,τ))] 

Rule 7. An agent (y) informs all team members of any IR retractions it is told about. 

∀y[tell(x, y, IR) ⊃ ∀k ∋ y∈Tk ∧x∉Tk [∀z≠y∈Tk [tell(y, z,¬IR(x,τ))] 

Rule 8. If an agent (x) has a belief ( τ ) that matches the information content of an IR from another agent (y), agent x 
tells agent y belief τ , provided agent x has a means for communicating with agent y, otherwise agent x tells the 
agent (z) which had communicated the IR. 
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∀x[bel(x, τ ) ∧ tell(z,x,IR(y,τ)) ∧ match( τ ,IR(y,τ)) ⊃  
IF comm(x,y) THEN tell(x,y, τ ) ELSE tell(x,z, τ )] 

 Figure 9: IP and IR dissemination rules. 

Rules 1 and 2 support the sharing of IPs and IRs associated with basic intentions that are a part of the 
acceptance of a role. Upon acceptance of a role, an agent shares all IPs and IRs associated with that role 
with all team members. Rules 4 and 5 govern the sharing of IPs and IRs associated with an agent’s 
capabilities. Upon acquiring an intention to described by an agent capability, the agent shares the 
associated IPs and IRs with its team members. Rule 6 specifies that IPs and IRs should be ‘passed on’ to 
other team agents even if the agent is not the originator of the advertisement. Rule 8 governs whom an 
agent should inform if and when it acquires information pertinent to an IR. Finally, rules 3 and 7 allow for 
the retraction of IRs upon completion of an intention. IPs are not normally retracted, as agent may 
continue to provide information. Additional rules (not shown) are required for determining when and how 
IRs should be combined. Ultimately, organizational workflow analyses may be needed to discover when 
it is advantageous for an agent to become an information collector/provider for a team of agents with 
intersecting information requirements. 

We have presented a framework for dynamic information sharing among teams of humans and agents 
working as parts of larger, frequently hierarchical, organizations. The model was motivated by our work 
to develop approaches to mixed-initiative human/computer control of agent-based systems, and in 
particular from our role in the development, in coordination with a large team of other researchers, of the 
MIATA demonstration of mixed-initiative agent teams in a hurricane disaster relief scenario. The key 
observation is that information needs, as well as agent capabilities to achieve classes of intentions must be 
shared among teams and across organizations. In many cases, the information sharing needs and provision 
capabilities need wider dissemination than the sharing of team intentions. By using an approach where the 
announcement of intentions is accompanied by information about relevant information needs and 
expected information acquisition activities, we can create an environment where agents can develop their 
own information flow models dynamically. This is critical to mixed-initiative command and control of 
such systems as it removes the burden from users who might otherwise need to explicitly characterize 
which agents needed to communicate to achieve team objectives. 

8. COALITION AGENTS EXPERIMENT 
The Coalition Agents Experiment (CoAX) TIE relies upon an unclassified fictitious military scenario 

named Binni (Rathmell, 1999) that was created to experiment with coalition military operations. Binni is 
set in the year 2012 and involves three imaginary countries in Africa – Binni, Gao, and Agadez. Due to a 
conflict in the region between these three countries, a multinational UN peacekeeping force is brought in 
stop the conflict. The multinational force includes the United States, the United Kingdom, Canada, and 
Australia. During the course of the scenario, a fourth imaginary country – Arabello – is called upon to 
join the coalition. The Binni scenario provides a rich and militarily-relevant setting for experimenting 
with agent-based systems for coalition operations. 

One of the critical concerns in any coalition operation (military or civilian) involves protection of 
sensitive or proprietary information. The Binni scenario models the complexities and nuances of the 
relationships between different countries that make up the coalition peacekeeping force. For example, the 
US, UK, and Australia have a high degree of mutual trust whereas Gao, which is also a member of the 
coalition, is trusted to a lesser extent. Therefore, from the perspective of one country (such as the US), 
there are three different scopes for information sharing: agents that are part of the US, agents that are part 
of the UK and Australia, and agents that are part of Gao. 
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Moreover, Gao starts out as a member of the coalition force but is then found to be providing 
misinformation to the rest of the coalition in order to advance its own private agenda. When this 
deception is discovered, the trust relationships are altered and the degree of information sharing between 
agents has to be adapted accordingly. 

Finally, during the scenario Arabello joins the coalition and new trust relationships must be 
established between the existing coalition members and Arabello. The coalition needs to be able to 
effectively manage their concerns about information released by its agents to Arabello’s agents and vice 
versa. 

8.1 SIMWORLD 
In order to more realistically model actors and actions occurring in the CoAX scenario, we used a 

simulator developed at BBN, SimWorld, for modeling the movement and interaction of agents and 
objects in the CoAX domain. SimWorld provides software agents with a simple world of objects, space, 
and events with which to interact. SimWorld provides an object hierarchy enabling the representation of 
passive objects, such as cities, roads, and bridges; active objects, such as sensors, transmitters, and 
vehicles with scripted motion; and agent avatars, that is, objects that are controlled by software agents 
from outside SimWorld. 

SimWorld was used in the COABS/COAX demo (see Figure 10) to maintain ground truth; that is, 
where naval vessels of all sides were located at each moment of the simulation. SimWorld objects 
represented cities, ports, airbases, vehicles, sensors, and weapons systems. The Arabello underwater 
acoustic sensor network was implemented as a collection of SimWorld objects. A software agent 
monitored the reports the sensors sent of their detections. Figure 10 shows a passive acoustic sensor 
(small circle with a dot at the center) detecting the presence of two submarines (red). Three other passive 
acoustic sensors have detected a ship (green). The ship is carrying its own active sensor (large circle), but 
no vessels are currently within range. 

Software agents interact with SimWorld using one of two APIs. Both APIs allow agents to add, 
remove, monitor, and control SimWorld objects and to discover other objects that are in a simulation. 
Since SimWorld is implemented in the Java programming language, the first API is the set of Java objects 
and their methods that are defined in SimWorld and can be called from a Java program. The second API 
is a set of messages that can be sent to SimWorld. SimWorld can send and receive messages using 
sockets, Java's Jini technology, or the COABS Grid (http://coabs.globalinfotek.com). Message content 
can be either in the FIPA ACL string format7 or in a FIPA ACL inspired Java object array format. 

                                                                 
7 http://www.fipa.org/specs/fipa00070/ 
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Figure 10: Sensor detection in the COAX simulation. 

SimWorld is implemented using OmarJ8, an open source simulator developed at BBN. OmarJ 
provides the simulation clock, messaging infrastructure, and scenario control: selecting which scenario to 
run, starting, pausing, and resuming the scenario, and setting the speed at which the scenario runs. 
SimWorld supports using OpenMap9, an open source Java toolkit developed at BBN for displaying 
geospatial information, as a means for visualizing the execution of scenarios. In OpenMap, geospatial 
data from a given source is displayed using a "layer" and multiple layers can be shown at the same time to 
create a display that combines geospatial data from different sources. In addition to showing the location 
and movement of simulation objects, the SimWorld layer supports the editing of scenarios. Object 
properties can be viewed and changed and new objects can be added by dragging them from a palette and 
dropping them on the map.  Scenarios can be saved using an XML file format.10. 

8.2 INFORMATION SHARING IN THE COAX TIE 

8.2.1 DYNAMIC INTEGRATION OF AGENT SERVICES  

One of the most difficult problems for an agent interacting with another dynamically discovered agent 
is translating the syntax and semantics of the agent communication languages. The traditional solution 
involves a human programmer coding a specific interface. The time and effort required by this approach 
can severely limit the usefulness of these dynamically discovered agent interactions. For example, in the 
CoAX scenario, an intelligence gathering agent, from the newly joined coalition member Arabello, 
registers its capability to provide contact reports from its underwater sensor grid. The coalition agents that 
                                                                 
8 http://omar.bbn.com/ 
9 http://openmap.bbn.com/ 
10 http://www.w3.org/TR/REC-xml 
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are searching for an enemy submarine need to be able to access, understand, and integrate the Arabello 
information feed as fast as possible in order to neutralize the enemy submarine before more damage can 
be done. Use of the DARPA Agent Markup Language (DAML) and DAML-Services (The DAML 
Services Coalition, 2002) allows the agents to perform many of the translation tasks, previously 
performed by a human programmer, themselves. Figure 11 illustrates the advertisement of Arabello 
capabilities and the discovery and usage of those capabilities by US agents. 
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Figure 11: Agent Interoperation in the CoAX Binni Scenario 

8.2.2 DARPA AGENT MARKUP LANGUAGE –SERVICES (DAML-S) DESCRIPTION 

The first step in achieving this fast dynamic interoperability is to create a DAML-S description of the 
service an agent provides. A DAML-S description consists of three components. The service profile gives 
a high level description of the inputs, outputs, preconditions, and effects of the service. By semantically 
marking these properties with links to shared ontologies, matchmaking agents can connect client agents 
with appropriate service providing agents. The service model defines the sequence of agent messages that 
go back and forth. Finally, the service grounding tells the client agent exactly how to format the messages 
defined by the service model, and how to get them to the service agent. In the CoAX experiment, two 
information provider services from Arabello agents were made available to the coalition. The query 
service allowed a client agent to request a list of contact reports for a specific time period. The subscribe 
service allowed a client agent to be continually informed about all new contacts of a certain type. The 
next three sections will describe the DAML-S descriptions created for the Arabello agent providing these 
services in the CoAX experiment.  

8.2.3 DAML-S SERVICE PROFILE 

The service profile defines the inputs required from the client agents, and the outputs provided by the 
service agent. These inputs and outputs are linked to DAML ontologies, some created specifically for this 
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scenario, and others that were part of a preexisting DAML web ontology knowledge base11. Both the 
query and subscribe services required a region of interest as an input. Two classes of regions were 
defined, a RectangularRegion, which consisted of two points forming the corners of a rectangle, and a 
PolygonRegion, which consisted of a set of points defining the vertices of a polygon. These points were 
latitude, longitude, and elevation triples, members of a LatLongCoordinate DAML class (found in the 
DAML knowledge base). Some specific instances of these region classes were defined to represent some 
important regions to the scenario, such as a region encompassing the Red Sea. Both services also required 
an object classification, which defined what type of object the client was interested in reports about. A 
Vehicles ontology, based on the CYC transportation ontology, was created that defined a class hierarchy 
of the types of vehicles expected to be in a naval scenario. Finally, the query service also required a time 
interval, which was linked to a time ontology defined by Kestrel Institute and found in the web 
knowledge base. 

The output from both services was linked to a SensorReport DAML class defined in an anti-
submarine warfare ontology we created for this scenario. The SensorReport contained a number of 
properties including bearing, range, time, sensor position, and object classification. Some of these 
properties were linked to the same DAML classes used to define the inputs, such as the 
LatLongCoordinate and Kestrel Time classes. Others such as the bearing property were defined in a 
newly created measurement ontology.  

8.2.4 DAML-S SERVICE MODEL 

The service model for the query service was quite simple. Consisting of a single input message and 
corresponding output message, the query service model is just an AtomicProcess. The subscribe service 
model was slightly more complicated, since multiple output messages can be generated.  

8.2.5 SERVICE GROUNDING 

Since the DAML-S grounding tells the client agent exactly how to format its input messages and how 
to read, we created a grounding ontology for a CoABS Grid agent, and created two instances for the 
query and subscribe services.  A GridGrounding consists of three main parts. First, in order to send a 
message to a Grid agent, the client needs to get a handle on the service provider’s AgentRep object. 
Getting a specific AgentRep requires knowing the agent’s unique ServiceID, or knowing enough fields of 
the agent’s CoABSAgentDescription so that a search will return a unique AgentRep. The first part of our 
GridGrounding provides either a ServiceID or a CoABSAgentDescription. This allows the client agent 
parsing the service description to locate the AgentRep of the service and eventually send a message to it.  

Once the client agent locates the service provider agent, it next needs to understand how to format its 
initial input message and how to understand the format of the expected response messages. This 
procedure is addressed by the next two sections of the GridGrounding. We defined an ontology of 
message types consisting of a hierarchy of classes from simple StringMessages through FIPA compliant 
messages and CoABS Grid Messages. An important member of the message ontology, which most of the 
more complex message classes are subclasses of, is the KeywordValue message. The KeywordValue 
message is composed of any number of KeywordValuePairs and a template string that defines how to 
format KeywordValuePairs into a single string. A KeywordValuePair consists of two properties, a string 
keyword, and a value that can be linked to any DAML class. Another type of message format is the 
DAMLRDFString. This corresponds to an instance of a DAML class defined in RDF syntax. 

In order to complete the definition of a message format, there needs to be a link from the inputs or 
outputs defined in the service model to the properties of the message classes defined in the service 

                                                                 
11 http://www.daml.org/ontologies/ 
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grounding. The client agent can use these links to determine where to put the input values, and then use 
the message ontology to derive the exact message string to be sent to the service. 

For the Arabello information provider query and subscribe services, the input and output messages 
were defined to be a Grid Messages with a FIPAMessage as content. FIPAMessage consists of a string 
performative and several KeywordValue pairs, the most important of which is the “content” keyword. The 
content of the FIPAMessage was a DAMLRDFString. This means that the actual message content being 
sent back and forth was marked up by DAML tags. Semantically marking up the message content allowed 
the use of powerful content filtering techniques described in Section 8.2.  

By using the information present in the service grounding, the process of constructing input messages 
and parsing the response output messages can be fully automated. The client agent needs only provide 
instances of the input parameters defined in the service model and then call a simple method to access the 
service and send its input message. The output messages provided by the service can be parsed using 
another method which pulls out the values of the output parameters specified in the service model from 
the received message and returns them to the client agent as part of a simple table. 

8.2.6 DAML-S SERVICE DISCOVERY 

In order to initiate this dynamic agent interaction, the client agent must first learn of the existence of 
the service agent, and then realize that this service agent can provide the needed data. Two separate 
methods to accomplish this were implemented, the first using the services of a DAML Semantic 
Matchmaker agent, and the second using the agent registration and search features of the CoABS Grid 
itself. 

8.2.7 DAML-S MATCHMAKER 

The DAML Semantic Matchmaker developed by CMU (Paolucci et al., 2002) is a direct solution to 
our service discovery problem. The service provider agent sends the matchmaker agent its DAML-S 
service profile. The client agent can then create a service profile template, describing what it’s looking for 
in a service agent. For example, the coalition agent created a template defining the inputs it could provide, 
namely an instance of the DAML class Region corresponding a region encompassing the Red Sea, and a 
DAML class representing the concept of a submarine. The required outputs from the service were then 
added to the template, in this case a sensor report DAML class containing bearing and range properties. 
The Semantic Matchmaker then matches this template against existing service profiles that agents had 
registered, returning matching service profiles to the client agent. 

8.2.8 GRID MATCHMAKING 

In the event that the Semantic Matchmaker agent is not available, a simpler matchmaking service was 
implemented using the Grid. We created a Grid capability class called DamlServiceDescription, which 
contained links to the DAML-S description files (profile, model, and grounding). The 
DamlServiceDescription initialization code parsed the service profile portion and stored the data in the 
local data fields. This gave the Grid’s predicate test search routines fast access to the service profile data 
without requiring parsing raw RDF. The client agent creates its service profile template and passes it to 
the Grid predicate test search routine. The Grid software then calls a special function to match the client’s 
template service profile with the service profiles registered by service agents. The matching system that 
was implemented for this predicate test was a very simple one, requiring exact matches for the input and 
output properties. DAML relationships such as sameClassAs and equivalentTo were ignored. This search 
routine returned to the client agent the DamlServiceDescription objects found. The full DAML-S 
description of the service could then be accessed by following the URI links present in the data fields of 
the DamlServiceDescription. 
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8.2.9 CLIENT BEAN 

 With the DAML-S service profile, model, grounding, and the matchmaker services, dynamic 
interoperability becomes a much more easily realized feature of multi-agent systems, with the burden on 
the client agent greatly reduced. If the client agent is not directly using the ontologies referenced by the 
service agent, however, some human assisted translation is necessary. One solution to making the process 
easier for the client is to provide a graphical interface allowing a client agent operator to specify the 
appropriate inputs. If the client agent is using a Java Beans development environment, integrating this 
graphical interface becomes a trivial task. This was the case for the CoAX experiment, where Lockheed’s 
Interoperable Agent Toolkit12 acted as the client agent requesting data from the Arabello information 
provider. 

 
Figure 12:  Query Service Input GUI 

Figure 12 shows the main window of the query service input graphical interface. According to the 
service profile and model, the query service requires three inputs, a Region, a TimeInterval, and an 
Vehicle class. 
 

 
Figure 13: Object classification definition 

The Vehicle class is simply a URI to a DAML class defined in the Vehicle ontology, and the possible 
values can be derived by simple parsing that ontology and retrieving all possible subclasses of Vehicle. 
Figure 13 shows the user selecting one of these possible Vehicle classes. 

                                                                 
12 http://www.atl.external.lmco.com/overview/programs 
  /IS/I2AT.html 
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Figure 14: Time Interval GUI 

Figure 14 shows the interface for specifying a time interval, which consists of two time point objects. 

 
Figure 15: Region of interest GUI 

 The interface for defining the region of interest for the query service is shown in Figure 15. Three 
possible choices are given, the first two, Rectangular Region and Polygonal Region correspond to DAML 
classes defined in the measurement ontology. The Predefined Region choice allows the user to select an 
instance of a Rectangular or Polygonal Region already defined, such as the Red Sea region. Figure 16 
shows the interface used for specifying the exact latitude, longitude, and elevation points comprising the 
region. 
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Figure 16: The Red Sea predefined region 

8.3 SEMANTIC FILTERS 
In some situations, restricting agent communication based solely on attributes of the sending or 

receiving agent may be a too coarse grained form of control. Often, the content of the communication 
contains the critical features for determining if and how to filter the communication. For example, one 
might wish to restrict the sharing of sensitive personal data or proprietary business information. Just as we 
have used DAML-S as the language to express the capabilities and services of agents, we use DAML to 
express the semantic content of the information exchanged through services. Using DAML, we present a 
system for specifying and enforcing a semantic content filter. This system requires no modification of 
source code, allowing content filters to be dynamically defined during run-time. 

We have demonstrated this system as part of the CoAX technology integration experiment (See 
Figure 17). In the CoAX scenario, the country of Arabello joins the coalition. Consequently, a number of 
new agents and agent services need to be dynamically made available to coalition agents. These agents 
and services are dynamically discovered, resulting in a number of new agent interactions. For example, 
one interaction involves a coalition agent tasked to locate a hostile submarine and an Arabello agent 
capable of providing sensor reports from an underwater sensor grid. As new coalition partners, Arabello 
system administrators dynamically allow sensor contact reports to be sent to the coalition agent, but for 
security reasons, restrict the range of messages that could be sent outside of the Arabello domain. The 
limitation, described as part of a policy represented in DAML, limits these outgoing messages to those 
whose content are reports about a specific class of submarine, belonging to the enemy forces, but 
disallowing reports on other ships, such as those of Arabello itself. 
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Figure 17: Semantic Filtering in the CoAX TIE 

8.3.1 FILTER SPECIFICATION 

In order to enable domain administrators to specify a message content filter, it first becomes 
necessary to access the DAML ontology describing the possible outgoing message contents. This 
information is available as part of the DAML-S service description for each agent: specifically, the output 
message property in the agent’s service process model. A DAML-S process model describes, among other 
things, the DAML classes representing the types of each service’s inputs and outputs. The approach to 
specification of message filters we adopted enables a KAoS domain system administrator to specify or 
define a subclass of the most general allowed class of input or output messages that will be permitted to 
be sent or received by some class of agents. 

For each content filter, a GUI is dynamically generated that lets the system administrator build up a 
specialized class definition that will be used as a filter by comparing it to each message being sent 
between the classes of agents covered by the policy. If the message is subsumed by this class, then the 
message is permitted to be sent or received in the case of a positive authorization policy, or blocked in the 
case of a negative authorization policy. The specialized DAML class is created by placing additional 
property range restrictions on the properties of the DAML class describing the message content specified 
in general by the agent’s service process model. For each property to be restricted, we can create two 
types of DAML restrictions. The first, called a toClass restriction, requires that the value of the property 
be a member of a certain DAML class, the second, called a hasValue restriction, requires the property to 
have a specific value. 

KPAT, our policy administration tool, provides an interface by which a system administrator can 
specify policies for interactions based on the properties of services and agents discovered dynamically at 
run-time. For the content filtering policies, the properties of the DAML class representing the output of 
each service are shown to the administrator in a dynamically generated GUI, along with a toClass 
restriction editor, and a hasValue restriction editor. The toClass editor contains a list of previously 
defined classes that could be selected in order to further restrict the property’s range. This list is 
developed by expanding and linearizing the subclass tree of the DAML class defining the original 
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daml:range of the property for the message class specified for the service. The hasValue editor allows the 
entry of freeform text representing the value of the property, or selecting from known instances of the 
range class, if it consists of a pre-defined closed list. Special graphical editors for certain DAML classes 
(e.g., dates and latitude/longitude coordinates) are also provided. In addition, if the daml:range is a 
daml:Class, meaning that the range of values of the property is a set of DAML class URIs, the possible 
values are automatically generated, just as for the toClass restriction.  

 
Figure 18: Semantic Content Filter Specification Dialog 

The interface generated for our CoAX example is shown in Figure 18. By selecting 
‘DieselSubmarine’ in the hasValue editor for the property objectClassification, the system administrator 
is restricting outgoing sensorReportResult messages from the Arabello agent that is the subject of the 
policy to those with property objectClassification having the value ‘DieselSubmarine’. 

8.3.2 FILTER GENERATION 

Once the classes describing the message properties that indicate which messages are to be filtered is 
specified through this GUI, a persistent DAML class is created, representing the full set of these 
restrictions. This new DAML class is defined as an intersection of the original output message class and a 
class expression (specified using daml:Restriction) for each property that is further restricted by a toClass 
or hasValue expression. In our example, the resulting DAML class is given below: 

 
<daml:Class rdf:ID="RestrictedASWSensorReport"> 
  <daml:intersectionOf rdf:parseType="daml:collection"> 
    <daml:Class rdf:about="&asw;#ASWContactReport"/> 
    <daml:Restriction rdf:ID> 
      <daml:onProperty rdf:resource="&asw;#objectClassification"/> 
      <daml:toClass rdf:resource="&vehicles;#DieselSubmarine"/> 
    </daml:Restriction> 
  </daml:intersectionOf> 
</daml:Class> 
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8.3.3 POLICY CONFLICT RESOLUTION 

Changes or additions to policies in force, or a change in status of an actor (e.g., an agent joining a 
new domain or moving to a new host) or some other entity require logical inference to determine first of 
all which policies are in conflict and second how to resolve these conflicts. We have implemented a 
general-purpose algorithm within KAoS for policy conflict detection and harmonization whose initial 
results promise a high degree of efficiency and scalability. 

When administrators commit mutually inconsistent policies, KAoS first checks to see whether one of 
the policies takes precedence over the other. The higher priority policy remains in force unchanged while 
the lower priority policy becomes the subject for policy harmonization. The result is zero, one, or several 
harmonized policies. Following harmonization, the user is notified and given an opportunity to resolve 
any remaining issues and approve the results of policy conflict resolution. Following user approval, any 
obsolete policies are removed and new policies are sent to the appropriate enforcers. Details on policy 
conflict resolution may be found in (Suri et al., Submitted). 

8.3.4 POLICY ENFORCEMENT 

In order for the filter to be enforced, the newly generated DAML class is provided, through the KAoS 
policy framework, to a policy enforcer. A message content policy enforcer uses a message content policy 
guard, to test whether the policy applies to each message. This guard was developed using the Java 
Theorem Prover (JTP) developed at Stanford KSL13. The enforcer provides to the guard the class 
describing the filter for which the policy is defined along with the URIs of the DAML ontologies 
referenced by this filtering class. Subsequently, whenever messages being transmitted between the classes 
of agents covered by the policy are detected, the content of those messages (also represented in DAML) is 
given to guard for comparison to the message filter class. This test succeeds if the message content is 
inferred to be an instance of the filter class. If it is, and the policy is a positive authorization policy, then 
the message passes the filter, and the enforcer permits it to be sent to its destination. If the policy is a 
negative authorization policy and the test succeeds, then the message is blocked. The reasoning provided 
by JTP in conjunction with a set of axioms defining the semantics of the DAML language and the sets of 
ontologies referenced by the message filter class and the message being tested enables the necessary 
reasoning about toClass and hasValue restrictions of the policy. 

In order for our semantic content filters to be tested against agent messages, the message content must 
be a DAML instance. For the CoAX demonstration, all agent messages were specified directly in DAML, 
by using DAML-S in conjunction with a grounding mechanism that wrapped the DAML message content 
(a string in RDF syntax) in a CoABS Grid message. If, however, the content of the message was in some 
other form, a mapping would need to be defined between the raw content of the message and a semantic 
encoding as a DAML description in order to use this approach to message filtering.  

9. CONCLUSIONS 
The CoABS program has provided the opportunity to understand what the capabilities of software 

agents can be, and how to make effective use of large numbers of agents in the accomplishment of 
specific, large-scale tasks.  We focused on a number of areas critical for the tasking and managing of 
teams of agents and humans. We have developed techniques for ‘agentizing’ existing systems in order to 
more quickly integrate these systems into larger, human managed organizations. We created mechanisms 
for dynamically forming, tasking, and monitoring teams of agents in support of human needs and 
objectives.  We have developed a framework for dynamic information sharing among teams of humans 
and agents working as parts of larger, frequently hierarchical, organizations. We have developed 
                                                                 
13 http://www.ksl.stanford.edu/software/JTP 
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techniques for automatically translating information across differing ontologies thereby allowing agents 
to ‘speak the same language’.  We have developed DAML-S services descriptions in order to express the 
capabilities and services of agents, as well as techniques for monitoring and controlling agent 
communication based on the semantic content of the communication messages, which enable agents to 
communicate interoperability. 
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12. APPENDIX A - COAX DEMONSTRATION SCRIPT 
Arabello Startup: 
1) Run Grid HTTP when told to 
2) Run Arabello Agents when told to, wait roughly 1 minute 
3) Run Commander GUI 
4) Run KaoS Servlet Runner 
5) Run KPAT 
6) Minimize everything except for KPAT gui. 
 
Step 56:  Coalition Starter Pack is received 
 

[First, a set of Arabello agent domains has to be created. This enables Arabello to partition their 
information and to accommodate their national sensitivities and security requirements. The Binni-
Coalition SysAdmin creates the overall Arabello-HQ domain.] 
 
[Now that the Arabello-HQ Domain has been added to the coalition, the Arabello-HQ SysAdmin can add subdomains for the 
agents that will be part of the coalition contingent and for the private agents that represent the sensors on their ships.] 
 
1) Select the “Namespaces” tab in the left hand panel 
2) Press the “Load Namespace” button at the bottom of that panel 
3) Select the “ArabelloDomain” ontology from the file list 
4) Press the “Load Selected Namespaces” button 
 
[wait roughly 20 seconds] 
4a) Start the IX Process Panel by double clicking on the Icon 

 
[Now the Arabello domains can be populated with agents which register  [STAGE- 1: BBN click on 
"Register Agents" on GUI - don't have to show this. NB: If we make this look too complicated people say 
"If I have to do this with 1000s of agents - no thank you!"] with the respective KAoS Domain Managers 
[STAGE- 2: [LT-09]  => [PROJ-01] Show Anaconda - with the domain and agents appearing and 
beginning to interact as each is created in KPAT]] 
[Anaconda should be showing here] 
 
5a) Bring up the Commander GUI (Java Icon with no title) 
5b) Select the Tools/KaoS Domain Registration menu item 
 
5) Click on “Register Agents in KaoS Domains” button. 
 
[Wait roughly 20 seconds] 
 
6) Click Refresh on the KPAT gui 
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[Wait roughly 10 seconds] 

 
[Coalition and Arabello SysAds now use the Policy Administration Tool  [STAGE- 3: Show KPAT being 
used to create example policy - that enables the Arabello-Intel agent to communicate and do some 
filtering ] to set up the agent policies (like SOPs and Standing Orders) for Coalition Communication with 
Arabello domains - so that all the agents behave as required - and Arabello does likewise. These policies 
enact behaviour changes in the agents which will be effected at run-time, without either knowing anything 
about the agent code or having to change any of it in any way] 
 
6.1) Select the Actor Classes tab in the KPAT Gui 
6.2) Select “Members of the Domain Arabello-HQ” 
6.3) In the right pane, click on the Load Button 
6.4) Select CoAXPolicy1.msg 
6.5) Click Open 
6.6) Click Commit 
 
 [ Wait 20 seconds] 
 
6.7) Click OK 

 [Arabello creates a policy restricting their Intel Agent to only provide INTEL reports on the class of 
submarines used by Agadez (Diesel). This is an example of restricting communications by content, rather 
than just by the domain of the sender and receiver] 
7) Select Arabello-Intel by navigating the agent tree in KPAT (4 mouse clicks) 
8) On the right panel, select DAML from the pull down menu 
9) Click on ADD 
10) A Create Daml Dialog  box pops up 
 
[Domain and policy information is represented using DAML - the DARPA Agent Markup Language developed jointly with the 
WorldWide Web Consortium - and combined with KAoS components to provide powerful reasoning, policy deconfliction, and 
policy enforcement capabilities. Policies prevent any Arabello agents from communicating outside their country’s domains 
except those that belong to the coalition contingent] 
 
17) Type in “BLOCK-CONTENT” in the name field 
18) Type “2” into the Policy Priority field 
19) Select CommunicationAction from the available action list 
20) Click on the Select button 
21) Click on the Lock Selection button 
22) Select carriesCoaxMessage from the “Available Roles” list 
23) Click on the Select button next to the “Available Roles” list 
[AuthorizationDialog pops up, this can take a few seconds] 
24) In the Authorization Dialog, select DieselSubmarine from the objectClassification list box in the toClass column. 
25) Click OK 
[Back to the CreateDamlContent dialog] 
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26) Choose hasDestination from the roles list 
27) Choose the Select button 
28) Choose Class button 
29) Select “Members of DomainBinni-Coalition” from the “Available Ranges” list 
30) Click on Select 
31) Click on “Add Target” 
32) Click on OK 
[Dialog box closes, back to main KPAT screen, you can see the policy listed] 
33) Click “Commit” 
[wait 20 seconds, but we’re done here and can move on to the next step] 
 
[Coalition contingent policies allow Arabello to receive any incoming messages from the coalition, while in turn allowing only 
certain kinds of Arabello sensor information to be given out to the coalition. Automated policy conflict detection and resolution 
is displayed graphically so that the SysAds can respond it the conflicts. In addition, we can see in Anaconda how certain kinds of 
messages from Arabello sensors pass through while others are blocked] 
 
[Coalition tasks Arabello to provide sensor data] 
 33) Receive a process panel to “provide intel” 
 34) Choose Tools/Provide Services on the Commander’s GUI (TAICHI) 
 35) Double click on services 
 36) Click on Intel Agent 
 37) Check the boxes under Binni-Coalition for sensorQuery and sensorSubscribe 
 38) Click OK 
 39 ) Back in the process panel, mark the request as done by selecting done in the right hand side list box. 
 
[MAD-Client] 
Step 83 
 
[Coalition decides to provide a feed to Arabello from the MAD sensor on the Australian Ship which is now operational again] 
Double click on the Mad Client icon 
 [wait 5 seconds] 
Type in “MAD-Data-Source” in the text box 
Click on “get images” 
 
[Mixed Initiative tasking] 
 
Step 88 
 
[Arabello is tasked by CF HQ to provide the ‘bottom of the box’  by deploying ships with ASW capability to monitor the 
Red Sea below Latitude 17N. The Arabello commander uses his mixed-initiative interface to generate a plan and task three ships 
to patrol this area] 
1. On Commader’s GUI: Select the Script button 
2. A Dialog box pops up, select the Edit button 
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3. A Dialog box pops up, Select Region Sweep 
4. On the Map gui, select the draw region button 
5. Draw a rectangle (4 mouse clicks) 
6. On the edit dialog box, select “Choose Region” 
7. On the edit box, select “Choose Assets” 
8. On the asset table, click on the first ship, then shift-click on the last ship. 
9. On the edit dialog box, select ok 
[Ships start to move, ship plan will show up as arrows on the map gui] 

 


